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The characteristic features of model potentials, effective potentials and pseudopotentials are 
carefully investigated. Then we justify our choice to work only with hermitian pseudopotential oper- 
ators, and we develop a general non-empirical method to determine atomic pseudopotentials. In view 
of their numerical use for molecular calculations, these pseudopotentials are cast into semi-local forms, 
and their parameters are obtained by a least-squares process; tables of parameter values are given for 
the two first rows of the periodic system. 
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1. Introduction 

To determine the electronic structure of matter  using the Schr/Sdinger equation 
is a rather difficult problem. All the electrons, i.e. core and valence electrons, are 
taken into account only for calculations on light atomic molecules. In all the other 
cases, we appeal to methods which study the valence electrons into the potential 
of atomic ions formed by the nuclei and the core electrons: empirical or semi- 
empirical methods of quantum chemistry, band calculations in solid state physics. 
All these methods are relevant, implicitly or not, to the gener/d theory of pseudo- 
potentials and model potentials; these concepts have been systematically devel- 
oped since a few fifteen years, particulary in the field of solid state physics [1, 2]. 
Their use in molecular physics and quantum chemistry is more recent, and there 
is now a renewed interest for the theoretical insight they introduce in atomic and 
molecular physics [3, 4]. 

A careful investigation of all the existing computat ional  methods for the study 
of the valence electronic structure of matter  shows their present inadequacy: on 
the one hand, empirical and semi-empirical methods of quantum chemistry 
(Htickel method, extended Hiickel method . . . .  ) do not possess a welldefined 
theoretical status; the matrix elements they involve are determined by means of 
adhoc processes whose only proof  is the partial success of these methods; moreover,  
they are not entirely variational: for instance, we cannot minimize the total 
valence energy of an alkane molecule with respect to the exponents ~ of the 2p 
orbitals of the carbon atoms. On the other hand, the pseudopotential methods 
applied to band calculations for solids are characterized by the use of non-hermi- 
tian operators and the systematic use of plane wave basis sets which are often 
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little compatible with the form of atomic orbitals remaining quasi-localized in 
solids, such as the d orbitals of transition metals or the f orbitals of rare earths. 
Moreover, many approximations are made in the estimate of the Coulomb or 
exchange electrostatic energy terms. Consequently, most of the methods of band 
calculations possess a status similar to the one of semi-empirical methods of 
quantum chemistry, and they are insufficient to reproduce with a good accuracy 
most of the basic experimental data: interatomic distances, vibrational force 
constants, etc. 

The experience is yet partial with regard to the use of pseudopotential techni- 
ques to determine valence molecular orbitals. But it already appears a great 
abundance of models and methods which give most frequently a great importance 
to energy terms to the prejudice of the form of the valence ground state wave 
functions; in addition, these methods are often parameterized by using experi- 
mental data, in most cases atomic spectroscopy data. 

We have here two goals: firstly, to develop a general theory of hermitian 
pseudopotentials which will be able to get together the pseudopotential models 
already proposed; secondly, to provide entirely ab initio atomic pseudopotentials 
which can be used easily in molecular and solid state calculations. Preliminary 
tests [5] carried out with not very elaborated pseudopotential models allow us to 
be sure of the efficiency of these methods in valence molecular calculations. In a 
previous publication [6], pseudopotentials we suggest here, have been used 
successfully to compute the valence molecular orbital energies of the ground 
state of the silane molecule; good results concerning other observables and other 
molecules have also been obtained [7]. 

In Section 2 we define precisely the concepts of hamiltonian and potential 
model, effective hamiltonian and effective potential, pseudo-hamiltonian and 
pseudopotential. It seems to us that the concept of pseudo-hamiltonian is more 
fruitful, and we study it in Section 3. Pseudopotential operators are fixed as soon 
as the form of atomic pseudo-orbitals has been chosen; Section 4 is devoted to an 
original method to determine these atomic pseudo-orbitals. Pseudopotential 
techniques introduced in Section 3 bring in a monoelectronic operator WR which 
plays a fundamental part in our method. But this operator is not easy to handle 
in molecular calculations (it involves particulary the calculation of exchange and 
Coulomb energy terms between core and valence functions); therefore, we cast 
the operator W~ into simpler forms. This useful determination of the operator W R 
by means of a least-squares process, forms the subject of Section 5} simple ana- 
lytical expressions are given for the first two rows of the periodic system. At last, 
in Section 6, our pseudopotential method is compared to other various pseudo- 
potential models; the analysis is about the two main points: the hermitian char- 
acter of pseudopotential operators, and the features which closely link pseudo- 
orbital shapes and pseudopotential forms. 

2. Total Hamiltonian, Pseudo-Hamiltonian and Effective Hamiltonian for an Atom 

The atomic total hamiltonian may be written in atomic units: 

N __ (1) • =  ZN:t h(i)+ Z'<J 1 
rij 
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where 

1 A, -  Z_ (2) 
h(i) = - ~ ri . 

N is the number of electrons, and Z is the nuclear charge. We divide afterwards 
these N electrons into Nc core electrons, i.e. those of the inner shells of the atoms, 
and Nv valence electrons: 

N = N c + N ~ .  (3) 

To solve the Eq. (1) within the framework of a one-electron method, e.g. Hartree- 
Fock method, leads to a monoelectronic hamiltonian operator according to: 

. . . . .  lect . . . . .  del> U = T+ V. (4) 

Tis the kinetic energy operator, and V the potential energy operator. The eigen- 
solutions of the opera tor / - /are  given by: 

H ~ i = s i ( f )  i . (5) 

Let us suppose that q~, ~ov, and ~0 e are, respectively, the core orbitals, the valence 
orbitals and the excited state orbitals, and ec, G, ee the corresponding eigenvalues. 

We then write: 

H = 2 i  ~il~gi)(~gil (6) 

o r  

Projection operators on the core states, the valence states and the excited states 
are defined by: 

P =  Ec Iq~e)(~ocl ; (2 = Y~ I~0v)(q~ol ; R = s  Ig~ " (7) 

We recall successively the definitions of pseudo-hamiltonians and model 
hamiltonians, then we introduce the most wide class of effective hamiltonians. The 
hamiltonians belonging to these three classes possess valence eigensolutions which 
come very near to the monoelectronic H operator solutions. 

We can symbolically write: 

{Hv~} C {HM} C {H~fr} �9 (S) 

The pseudo-hamiltonian set is included in the model hamiltonian set which is itself 
included in the effective hamiltonian set. 

A pseudo-hamiltonian is defined by: 

H p s = H  + VR= T+ V+ VR= T+ b~" (9) 

Vps represents the total potential in which the valence electron is set. V R is an 
hermitian 1 monoelectronic operator;  it is repulsive near the nucleus, and such as 
the lowest eigenvalues of Hps are coincident with the eigenvalues of H in the 
valence region: 

H p ~ - - G g ~ v  . (10) 

1 There are also non-hermitian pseudopotentials (cf. the discussion of Section 6). As for us, the 
used operators V R will always be hermitian. 
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Thus Hps may be written: 

Hps= ~v evlqS~)(Ovl + ~k Ekl(O~)( dpkl . (11) 

~bv denotes a valence pseudo-orbital, and ~b k an excited pseudo-function with the 
corresponding eigenvalue E k. 

Pseudo-orbitals ~b~ are linear combinations of core orbitals % and valence 
orbitals % with the same symmetry: 

~b~=a~q~o + ~c acq)c �9 (12) 

The coefficients ar are small in front of the coefficient a~ which is close to unity. 
Similarly, a model hamiltonian is defined by: 

H M = T+ VM (13) 

where V M is a model potential. The spectral representation of H~ may always be 
cast into the form (11), but now the pseudo-orbitals have the following form: 

~bv=ao~0~+ Z~acq)c+ Zeaeq)e, (14) 

where the coefficients ar and a e remain small with respect to the coefficient a~ which 
is close to unity. 

An interesting special case occurs when the relation (12) is nearly satisfied for 
a model hamiltonian; then we have a model pseudo-hamiltonian. Practically, the 
concepts of model pseudo-hamiltonian and pseudo-hamiltonian are sufficiently 
similar so that it is not necessary to distinguish between them. So in this article, 
we shall only use the term of pseudo-hamiltonian with the notation Hp~. 

The concept of effective hamiltonian appears when the lowest eigensolutions 
(E~, ~bv) of this hamiltonian are only in the neighbourhood of the valence eigen- 
solutions (e~, ~0~) of H: 

Hef  t = T+ Ver f (15) 

where Vef f is an effective potential. The hamiltonian Hef t may be cast into the form: 

Heft= 2v E~lqSv)(q~[ + ~k E~l~bk)(q~kl (16) 

As for Hp~, each valence pseudo-orbital ~b~ is a linear combination of core and 
valence orbitals [relation (12)]. The valence pseudo-orbital energies E~ are differ- 
ent, but near to the valence orbital energies e~. As previously, we obtain a model 
effective hamiltonian when the valence pseudo-orbitals q~ only roughly satisfy 
the relation (12). So practically, we do not distinguish between the concepts of 
model effective hamiltonian and effective hamiltonian; later on we shall only use 
the word of effective hamiltonian with the notation Her f. 

The schematic Fig. 1 shows the eigensolutions of these various hamiltonians 
H, Hps (or HM) , and Hef f. 

Ohrn and McWeeny [8] have already suggested an effective hamiltonian for 
a valence electron outside a closed shell described by a highly accurate wave 
function. To generalize this work for several valence electrons would lead to 
unnecessary and intricate atomic potentials; the simplest way is to stay at the 
level of pseudopotential: to keep the atomic orbital energies is a good starting 
point for subsequent molecular calculations, as it is expected that the molecular 
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MOLECULAR ORBITAL 
ENERGIES 

H Hps (o~ HM) H ~f  

Fig. 1. Schematic representation of the eigensolutions of the previously defined hamiltonians 

level splitting is primarily due to the overlapping of the outermost part of the 
atomic orbitals. For this reason, we have chosen to work only with pseudo- 
hamiltonians Hp~ and the corresponding total valence pseudo-hamiltonians afps. 

3. Total Valence Pseudo-Hamiltonian 

The monoelectronic hamiltonian operator H (relation (4)) is obtained from 
the expression (1) of the atomic total hamiltonian ~ .  In the same way, the mono- 
electronic pseudo-hamiltonian Hps is obtained from the following total pseudo- 
hamiltonian: 

aeps= 2 zl - 5 +  %s(il + rT" 

Wp~ is a monoelectronic operator which is then given by: 

W,s= V,~- Vov (18) 
o r  

Z 

Voo, V~, v and Veeo denote the sum of Coulomb and exchange operators relating to, 
respectively, the core orbitals, the valence orbitals and the valence pseudoorbitals. 

(So we have the following equality: v= -Z+ v~c+ V~ .) Wps represents the inter- 

action potential between a valence electron and the ion made of the core electrons 
and the nucleus of the atom. Let us suppose that z = Nv is the net charge of this 

z 
ion. The operator Wp~ tends to the Coulombic energy - - -  far from the nucleus. 
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P(r)=R.r 

0 

Fig. 2. Radial parts of  the orbital q~ and the corresponding pseudo-orbital q5 v 

So we introduce the operator WR such as: 

z 
%s = - - +  wR (19) 

From the Eq. (18), it follows that: 

Wn = V~oo - N~ + V~o~ _ Vo~ + Vn. (20) 

This operator WR is a fundamental one for applying our method; it is repulsive 
near the nucleus, attractive in the region common to the core and valence orbitals, 
and it cancels out in the valence region where the pseudo-orbitals qS~ become iden- 
tical with the orbitals ~bv. The operator Wn, which is dependent on pseudo-orbitals 
~b~, also depends on the used one-electron model through the term (Ve-V4~). 
But this term is associated with a null charge distribution, and therefore this 
dependence on the one-electron model is weak: it cancels out in the valence region. 

We must notice that the use of the operator WR [relation (20)] allows us to 
write the monoelectronic pseudo-hamiltonian through the following form: 

1 z V~v+W,  (21) Hps= --~ A - r+  

4. Determination of  the Valence Pseudo-Orbitals 

In opposition to most of the pseudopotential techniques used in solid state 
physics, where one looks for pseudopotentials Vp~ as "weak" as possible in order 
to have valence pseudo-orbitals looking like plane waves, we propose to construct 
systematically hermitian operators V R and pseudo-hamiltonian operators in such 
a way that their variational solutions ~b v coincide at best with the true orbitals q)v 
in the valence region, and cancel out in the atomic core region. Figure 2 gives the 
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Table 1. Atomic double-zeta valence pseudo-orbitals q52s from Li (Z~3) up to Ne (Z= 10). The ex- 
ponents ~ are those of the Clementi's double-zeta functions [16]. All the quantities are in atomic units 

Atom Orbital R c n~ ~ Ci f Charge 

2 0.45000 0.53630 
Li 2s 1.49 0.0007 0.96 

2 0.85000 0.52373 

2 0.50000 -0.11068 
Be 2s 1.03 0.0009 0.97 

2 0.90000 1.08733 

2 0.88143 0.20413 
B 2s 0.97 0.0006 0,91 

2 1.40704 0,81678 

2 1.16782 0.31803 
C 2s 0.64 0,0015 0.96 

2 1.82031 0.70751 

2 1.39327 0.35354 
N 2s 0.54 0.0017 0,96 

2 2.22157 0.67617 

2 1.62705 0.36939 
0 2s 0.47 0.0018 0.95 

2 2.62158 0.66226 

2 1.94665 0.45141 
F 2s 0.42 0.0017 0,95 

2 3.09603 0.58081 

2 2.18390 0.45940 
Ne 2s 0.37 0.0019 0.95 

2 3.49207 0.57367 

aspect of the radial parts of the orbital q~v and the pseudo-orbital qSv according to 
the previous criterion. 

In a first approach, one may take as pseudo-orbitals ~b~ Slater type orbitals 
non-orthogonal to the core orbitals, whose exponents are given either by the 
Slater rules [9] or by calculations [10, 11]. But only one Slater orbital is not 
sufficient to reproduce accurately the outer part of a valence orbital even if its 
parameters are fixed in order to obtain this result [12]. It would also be possible 
to use nodeless valence orbitals calculated by means of a statistical pseudo- 
potential [13]. Nevertheless, it seems to us that it would be better to operate from 
all-electron Hartree-Fock calculations: the valence pseudo-orbitals are then 
admixtures of core and valence orbitals having the same symmetry [14, 15]. But 
it is yet dllIicult, whatever the used criterion of relocalization of the valence 
orbitals may be, to remove oscillations in the core region and at the same time, 
to get in coincidence the orbitals and the pseudo-orbitals in the valence region. 
As for us, we prefer to get out from the core-valence admixture restriction and to 
determine valence pseudo-orbital q~ in such a way that its radial part coincides 
at best with the one of the orbital ~0~ at a distance r from the nucleus greater than 
a cut-off radius R c. For a given orbital, the value of Rc is obtained by intersecting 
the radial part P(r) of the valence orbital with the one of the outermost core 
orbital of the same symmetry (cf. Fig. 2). Although our definition of R~ appears 
to be an arbitrary one, we have noticed that the pseudo-orbital shape is not 
strongly dependent on the value ofR C. 

The pseudo-orbitals are determined by minimizing the function: 

f = ( 4 ~ -  ~ov[qS~ - q~)R~ (22) 



290 P. Durand and J.-C. Barthelat 

Table 2. Atomic double-zeta valence pseudo-orbitals q53s and ~b3e from Na (Z= 11) up to Ar (Z= 18). 
The exponents ~ are those of the Clementi's double-zeta functions [ 16]. All the quantities are in atomic 

units 

Atom Orbital R c n~ ~ C~ f Charge 

3 0.75485 0.81338 
Na 3s 1.64 0.0003 0.98 

3 1.25944 0.22273 

3 0.90759 0.66833 
Mg 3s 1.42 0.0008 0.96 

3 1.50587 0.38116 

3 1.15946 0.68101 
3s 1.23 0,0012 0.95 

A1 3 1.86836 0.36223 
3 0.89522 0.77588 

3p 1.38 3 1.60850 0.27796 0.0003 0.97 

3 1.39955 0.72686 
3s 1.08 0.0016 0.94 

Si 3 2.23938 0.31192 
3 1.09340 0.71473 

3p 1.18 3 1.86255 0.33626 0.0005 0.96 

3 1.63895 0.82897 
3s 0.97 0.0021 0.94 

3 2.92052 0.21461 P 
3 1.23975 0.63025. 

3p 1.04 3 2.08127 0.42363 0.0007 0.95 

3 1.81513 0.79009 
3s 0.89 0.0027 0.93 

3 3.15955 0.25600 
S 3 2.33358 0.49126 

3p 0.93 3 1.32171 0.57534 0.0010 0.95 

3 2.00905 0.77133 
3s 0.82 0.0026 0.93 

CI 3 3.34163 0.26959 
3 1.60921 0.70708 

3p 0.84 3 2.85870 0.35302 0.0010 0.94 

3 2.18470 0.77255 
3s 0.76 0.0034 0.93 

3 3.74910 0.27347 
Ar 3 1.81174 0.76148 

3p 0.77 3 3.42549 0.30471 0.0014 0.94 

wi th  the  c o n s t r a i n t :  

(q~vlq~v) = 1. (23) 

In  the  e x p r e s s i o n  (22), the  i ndex  R c s h o w s  t h a t  the  i n t e g r a t i o n  c o n c e r n i n g  the  

r ad i a l  pa r t s  is r e s t r i c t ed  to the  i n t e r v a l  [-R C, ov]. W e  sea rch  for p s e u d o - o r b i t a l s  

be ing  l inear  c o m b i n a t i o n s  o f  S la t e r  o rb i t a l s  Zi: 

(o~ = ~']= t C i z i .  (24) 

To minimize (22), by taking the relations (23) and (24) into account, leads to the 
system of linear equations: 

~ j =  1 [-(ZilZj)Rc -- )c(ZilZj)-]Cj = (ZIIcPv)Rc (25) 

whe re  2 is a L a g r a n g i a n  m u l t i p l i e r ;  it is c lose  to ze ro  because  the  o rb i t a l s  % a n d  
qS~ are  v e r y  n e a r  for r > R c .  T h e  coef f ic ien ts  C~ a re  o b t a i n e d  by  so lv ing  the  sys tem 

(25); this r e s o l u t i o n  is i t e ra t ive .  W e  h a v e  d e t e r m i n e d  the  va l ence  p s e u d o - o r b i t a l s  
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from the atomic double-zeta orbitals of Clementi et al. [16] for lithium (Z = 3) up 
to krypton atom (Z = 36). 

Each pseudo-orbital is expanded into the two outermost Slater orbitals of the 
double-zeta basis. The pseudo-orbital parameters are given in Tables 1 and 2 for 
the atoms of the two first rows of the periodical system. The minimum of the 
function f and the electronic charge fractional part (~pvlq~v)Ro associated with the 
orbital q~v, which lies outside the sphere of radius Re, appears also in these tables. 
The Rc values have been obtained by interpolation from numerical Hartree-Fock 
solutions [17]. 

We take notice that the agreement between valence orbitals and pseudo- 
orbitals is good for all the studied atoms because the greatest value of the function 
f is 0.003; this value is often smaller than 0.001. With the chosen R~ values, we 
have always outside the sphere of radius R~ a fractional charge associated with the 
orbital ranging about 0.95 electron. This charge is sufficiently close to unity in 
order to consider the value R~ as an approximate measure of the atomic core 
radius. 

5. Practical Determination of the Operators Vg and Wg 

With a view to simplify calculation techniques, it is interesting to cast V R and 
W R into a simpler semi-local form which depends only on a small number of para- 
meters: 

VR= ~z VR,t(r)P~, (26) 

WR = Zt  WR,l(r)Pt, (27) 

with: 

P l :  +t Zm =-ll~m>(~ml. 

P~ denotes the projection operator over the 1 th subspace of spherical harmonics. 
The numerical determination of the operators V R and W R takes place only 

after we have chosen a simple analytical form for the functions VR,I(r ) and Wg, z(r ). 
We propose the following forms: 

An,., l 
~ .  r" n integer such as n < 21+ 3, (28) 

~i Ci,l exp[-gi,  lr(or r2)] 
r"' (29) 

The parameters A,,t; Ci,t; ~i,t; n~ are obtained in an entirely theoretical way by a 
least-squares method. 

These forms and other ones have already been used by several authors for the 
functions WR, t (see the discussion in Section 5.5). 

5.1. Numerical Determination of the Operators Vg 

The operators V R have an obvious physical meaning: they allow us to pass 
from the solutions of the true monoelectronic hamiltonian H to the ones of the 
pseudo-hamiltonian Hps owing to the relation (9). 
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The parameters on which the operators V g depend, may be determined without 
ambiguity for a given set of pseudo-orbitals ~bv and valence orbital energies ev. The 
Eq. (10) must be satisfied and the pseudo-hamiltonian Hps may be written: 

Ups = ~v  ev[r162 + ~,k Ekl(Jk> < 4~kl . (30) 

If we choose the form (28) for the functions VR,t(r) and if the corresponding 
parameters have the arbitrary values A'n,t, then the value of the pseudo-hamilton- 
ian is: 

--A'.l  E,L (31) 

H~ is cast into diagonal form in the basis set constructed with the core orbitals 
(Pc and the valence orbitals q~ which are solutions of the hamiltonian H. Let e'~ be 
the energies associated with the valence pseudo-functions (b'~ and E~ the energies 
associated with the pseudo-states 4~'k, which are obtained by diagonalizing H~. 
We then write: 

H'p~ = ~v e'vl~><4~21 + ~ k  E;,Iq$;,><~;,I �9 (32) 

The two operators Hp~ and H~, will have their valence part all the more near as the 
norm of the operator (9 defined by: 

o--- ~o [e'~16'~><q$'vl- ~14,v> <q~l] (33) 
will be close to zero. 

The parameter values An, t which are such as the valence eigensolutions of the 
pseudo-hamiltonian H~s may be ~ and ~b~, are also the ones for which the norm of 
the operator (9 is minimum. This minimization is made by means of the Powell 
algorithm [18]. 

As an example, we give the result concerning the carbon in the 3p state in a 
simple case: 

0.354 0.953 
VRO--' r P r 2 

in atomic units; the value of the norm ]1(911 is then 0.02. This result has been ob- 
tained from the atomic Clementi's double-zeta orbitals [-16], the valence pseudo- 
orbital q~2s being represented by a Slater orbital the exponent of which has been 
optimized by Clementi and Raimondi [10]. 

5.2. Semi-Local Representation o f  the Operators W R 

The straightforward determination of the operators W R into the semi-local 
form (27) may be carried out according to a process similar to the previous one. 
If we choose to cast the functions WRa(r ) into the form (28), and if the corres- 
ponding parameters have the arbitrary values B',, t, the pseudo-hamiltonian may 
be written: 

B'n, t H;s = T--Zr + Vr + ~l  Z. r"- P,' (34) 
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PSEUDOPOTENTIAL 
(~.~ 

2 

o ~ fi 3 ,-(~ L.) 

-2 / 

-4 

-6 ~f//I ~ -~-+w" ~ 

Fig. 3. Pseudopotential curves for the 3p state of the carbon atom 

After casting Hps into diagonal form for a given basis set, we obtain" 

g',,s= E,, EvlqTv)(q~LI + Zk E~lqTk)(qTkl. (35) 
The parameter  values B,a which are such as the pseudo-hamiltonian H ~  possesses 
the same valence part  as the operator  Hps, are also the ones which lead to a mini- 
mum value for the norm of the operator  previously defined by (33). 

This determination of the operators W R is less easy than the one of the operators 
VR; as a matter  of fact, it is here necessary to choose a one-electron model and to 
calculate the bielectronic integrals Vr The results concerning the carbon a tom 
in the 3p state are in atomic units: 

0.248 0.758 
WRo-- ' r + - ~ -  with 116o11=0.02, 

0.064 
WR, 1 -- r2 with H6O[[ =0 .05 .  

These results have been obtained from the same atomic data than those used to 
determine V R. All the calculations presented here have been carried out in the 
framework of the Har t ree-Fock-Roothaan one-electron model. 

5.3. Discussion of the Previous Results 

The semi-local forms of the operators V R and WR have the advantage to allow 
a graphical representation of the potential acting on a valence electron of symmetry 

I. The Fig. 3 gives the aspect of the curves ( I ) - ~ ,  (II) _ z +  VR,o and (III) __z+ WRo r 
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Table 3. Silicon atom in the 3p state. Comparison between the parameter values B,, z of the operator Wg 
according to the valence pseudo-orbital form 

Nature ofthe valence / = 0  l=1  
pseudo-orbitals 4v 

B1,0 B2,o I1~11 BI,1 B2,, II~ll 

One Slater orbital - 1.04901 2.36160 0.04203 - 0.27853 0.95883 0.03330 
according to 
Clementi and Raimondi 

Our double-zeta valence - 0.97730 2.37354 0.01089 -0.48028 1.38379 0.00425 
pseudo-orbitals 

[ n l  t B2 l \ 
Table 4. Parameters B 1,t and B2, l for the semi-local representation of the operator W R/WR,I = ~""  + ~  

\ F F- ] 

from lithium to neon (a.u.) 

Atom l B1, l B2,I IIOll 

Li 2S 0 -0.20214 0.89606 0.00121 

Be 1S 0 -0.33055 1.00088 0.00573 

B 2p 0 -0.47157 1.09411 0.00421 
1 - -  -0.06249 0.00650 

C 3p 0 -0.63753 1.17715 0.00449 
1 - -  -0.04932 0.00762 

N 4S 0 -0.77759 1.21265 0.00538 
1 - -  -0.04322 0.00836 

0 3p 0 -0.92354 1.24276 0.00413 
1 - -  -0.03853 0.00888 

F 2p 0 - 1.08150 1.27283 0.00369 
1 - -  -0.03432 0.01024 

Ne 1S 0 - 1.23346 1.29335 0.00319 
1 - -  -0.03083 0.01003 

for the carbon a tom in the 3p state; the used functions VR, o and WR,o depend on 
two parameters  and are those previously defined. 

We must notice that there is no term VR, 1 (r) in the expression of the operator  V R 
defined for the carbon atom, because this a tom does not possess core electrons of 
symmetry p. Therefore in the curves of the Fig. 3 only the terms of symmetry s 
o c c u r .  

Both graphs corresponding to VR,o and WR, o present the same aspect: they 
correspond to a potential  which is very repulsive in the core region, attractive in 
the region common to the core and valence orbitals in such a way that the valence 
pseudo-orbital  energy remains equal to the energy %s of the true valence orbital 
~o2s. Nevertheless, we point out that the curve (III) is always underneath the 
curve (II): therefore WR,o is less repulsive than VR, o in the core region. This fact is 
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/ B1 I B2 l~ 
Table 5. Parameters B1, and B2,1 for the semi-local representation of the operator WR I W~a=~: + ~:)  

from sodium to argon (a.u.) 

Atom 1 Bl,t B2,t 11(911 

Na 2S 0 -0.29566 1.23332 0.00569 

Mg 1S 0 -0.48345 1.64792 0.00820 

A1 2p 0 -0.72773 2.05147 0.01032 
1 -0.33891 1.16927 0.00268 

Si 3p 0 -0.97730 2.37354 0.01089 
1 -0.48028 1.38370 0.00425 

P 4S 0 - 1.23199 2.63794 0.00348 
1 -0.60688 1.52763 0.00625 

S 3p 0 - 1.41816 2.77039 0.00525 
1 -0.70102 1.60256 0.00853 

CI 2p 0 - 1.64802 2.93599 0.01103 
1 -0.89178 1.78393 : 0.00621 

Ar 1S 0 - 1.83310 3.03094 0.00789 
1 -1.02073 1.86633 0.00415 

in agreement  with what  we may  deduce from the relation (20); Wa differs only f rom 

{V -Ncl  and ( V o -  V4.); the first one is negative V a by the two following terms:  \ oc r ] 

in the core region and the second one has only a very small contr ibut ion to W•. 

5.4. Tables of Semi-Local Operators W a from Lithium to Argon Atom 

The method  is the same as in Section 5.2, but  the basis set is a more  extended 
one for each a tom:  it is const ructed with the functions ZZp which have been used to 
define Clementi 's  double-zeta a tomic  orbitals. 

In addit ion to the used one-electron model,  the operator  W R is essentially 
determined by the set of  energies e v and the form of the pseudo-orbitals  4~v- Table 3 
gives the values of  the parameters  B,, z of the opera tor  Wa for the silicon a tom in 
the 3p state, when the valence pseudo-orbi tals  qSo are successively described by one 
Slater orbital the exponent  of which has been optimized by Clementi and Ra imondi  
[10], then by the double-zeta orbitals that  we have previously defined; in bo th  
cases, the energies e~ are the valence orbital energies obtained by Clementi [16] 
with a double-zeta basis set. 

The use of  our  double-zeta valence pseudo-orbitals  gives the lowest values 
of  the n o r m  of the opera tor  (9. Then it clearly appears  that  these double-zeta 
pseudo-orbi tals  allow a better adjustment,  in a least-squares meaning, to the W R 
opera tor  chosen in its semi-local representat ion (28). Therefore we have chosen the 
double-zeta pseudo-orbi tals  d~efined in the previous section to build up a table of 
semi-local operators  WR from lithium (Z =- 3) to a rgon a tom (Z = 18). The results 
are listed in Tables 4 and 5; they are pictured in the Figs. 4 and 5 that  show the 
potential  acting on an s symmetry  valence electron. 
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Fig. 4. 
Potential acting 

on an s symmetry valence electron 
for first row atoms 

of the periodic system 

5.5. Discussion on the Analytical Expressions for the Functions VR,z(r) and WR, l(r) 

W e  have chosen  very s imple ana ly t ica l  express ions  to r ep roduce  the depen-  
dence on  r of  the o p e r a t o r s  V R and  W R in thei r  semi- local  representa t ion .  W e  are  
going to c o m p a r e  our  express ions  with those  a l r eady  suggested by var ious  authors .  
We  will only  invest igate  the potent ia ls .  V R and  WR tha t  are very repuls ive near  the 
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Fig. 5. Potential acting on an s symmetry valence electron for second row atoms of the periodic system 

core in agreement with valence pseudo-orbitals which cancel out in the core region 
(for a discussion on "flat bot tom" and repulsive pseudo-potentials, see section 6). 
A simple pseudo-potential with only one parameter has been proposed by Simons 
[19]" 

al 
WR, t= ~ . (36) 

However, the most commonly used pseudopotential is the Hellmann's one [20] 
in its local form [21, 22] : 

W R = A e x p ( -  ~r) (37) 
r 

or in its semi-local representation [23-26]: 

e x p [ -  ~lr (or r2)] 
WR, I= AI (38) r 

The advantage of the dependence on r in e -  ~' r: clearly appears when the molecular 
calculations are performed with a basis of gaussian functions [27]. 
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The potentials (36), (37), and (38) are too rough to give accurately an account 
of the variations of the quantities WR, ~ in function of r. Ladanyi [28] has then 
proposed a potential that consists of two terms of Hellmann type: 

WR = A exp(-- c~r) ~- B exp( -  fir) (39) 
t" r 

where the coefficients A and B are generally of opposite sign [22, 29, 30]. Sums of 
exponential functions are also easily used in atomic calculations [31]. Most of the 
expressions of WR,~ which have been used [27, 32, 33], are particular cases of 
relations (28) and (29) given at the beginning of this section. 

As a reminder, we quote more complicated analytical dependences [-34, 35] or 
dependences which introduce an angular point [36, 37]: all these pseudopotentials 
would be probably uneasy to handle in molecular calculations. 

On the numerical point of view, we do not have to prefer any particular 
form for WR, V It is sufficient to use a basis set of radial functions complete enough 
to reproduce the WR, ~ as a function of r. But in the future, the non-local forms 
[38, 39] could be preferred: for the molecular calculations include only overlaps 
between atomic orbitals that are very easily calculated. 

6. Discussion 

The operators V R and W R are hermitian operators. Since some authors [-15, 
40, 41] have suggested the introduction of non-hermitian operators, it is necessary 
to justify the reason why we use only hermitian operators in a general theory of 
pseudopotentials. Austin et al. [-40] define V R by: 

VR = P A  

V R = P A P +  PAQ + P A R  (40) 

where A is any operator. Owing to (40), the relation (12) is always satisfied: it means 
that the pseudo-orbital 4) v is exactly a linear combination of the Hartree Fock 
core cpc and valence gov orbitals. With an appropriate choice for A, it is always 
possible to obtain a good valence pseudo-orbital ~b, with but few oscillations in 
the atomic core. The advantage of a non-hermitian formulation of pseudo- 
potential theory is that the valence spectrum is automatically preserved whatever 
the A operator may be. But this pseudopotential V R has the great disadvantage of 
making all the formalism non-hermitian, in particular the total pseudo-hamilto- 
nian. So we think that the use Of non-hermitian operator, as proposed by Weeks 
et al. [41] is not a good solution. Therefore, in this work, we have mixed the core 
and valence orbitals according to an operator V R which is defined in the subspace 
(P + Q) by: 

VR=(P + Q)A(P + Q) (41) 

where A is an hermitian operator, which is chosen in order to maintain the valence 
spectrum by going from H to Hps. Practically, to determine VR, one has first to fix 
the shape of the valence pseudo-orbitals: then VR is obtained by a least-squares 
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Fig. 6a-c. 
Pseudopotential radial component 

z / 
( - r  + WR,0) and pseudo-orbital radial 

part R(r) for the three following cases 
(a) pseudopotentials oscillating in the core 

region, 
(b) "flat-bottom" pseudopotentials, 
(c) pseudopotentials repulsive near by the 

nucleus 

technique (see Section 5). In fact, the valence pseudo-orbitals that were chosen are 
rigorously nodeless in core region; they are only approximately linear combi- 
nations of valence orbitals q)v and core orbitals q~c. Consequently, the equality (41) 
is not exactly satisfied. But this last remark has no incidence on the grounds which 
have motivated our choice ofhermitian operators. 

Now we are going to analyse briefly the links between the shape of pseudo- 
orbitals and the aspect of pseudopotential W R. The actually used pseudopo tentials 
may be divided in three types: the pseudopotentials oscillating in the core region, 
the "flat-bottom" pseudopotentials and the very repulsive ones near the nucleus 
(Fig. 6). 

The oscillating pseudopotentials [42-44] are associated with pseudo-orbitals 
in which the oscillations have not completely disappeared in the atomic core. 
This occurs when the valence pseudo-orbitals q~v are strictly limited to a linear 
combination of core and valence orbitals. These pseudo-orbitals would be unsui- 
table for molecular calculations that need extended basis set to reproduce the 
oscillations of the wave function near the nucleus. 

The flat-bottom pseudopotentials proceed from solid state physics and 
particularly from the model of Abarenkov and Heine [45]; they have been used 
by Kutzelnigg et al. [36]. These pseudopotentials modify considerably the shapes 
of valence atomic orbitals which have actually very slight variations as well inside 
the core as in the valence region. However they are very interesting if the solution 
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is taken as a linear combination of plane waves exp ( -  ik. r) but they are incon- 
sistent with pseudo-orbitals cancelling in the core region. Now, in some cases, 
3d orbitals of transition metals or 4f orbitals of rare earth elements, the atomic 
orbitals are a little modified when an atom is engaged in a molecule or in a solid. 
So it would be unreasonable to try to reproduce these looking like Slater orbitals 
by pseudo-orbitals approximating to plane waves. When this is done, considerable 
difficulties are encountered: the parameters of pseudopotentials depend on the 
band energy levels and have resonances [46]. If these pseudopotentials seem 
badly adapted to the electronic ground state of a system, they can be used for 
excited states: the excited orbitals are much greater than the core atomic radius 
and the excited electrons "do not see" the details of the inner structure of the 
pseudopotential [36]. 

Bonifacic and Huzinaga's work [39] is the nearest one to ours 2. They have 
determined theoretical pseudopotentials for the first row from lithium to neon, 
with the operator: 

W R = - Z [ A  1 exp( - ~1 r2) + A2 e x p ( -  ~2r2)] + B[~pl~)(~pl~[. (42) 

If we compare this expression with (20), we remark that the first two negative 
terms describe approximately the Coulomb interaction energy with the core elec- 
trons whereas VR is represented by the second term I~pls)(~0~]. Such a represen- 
tation of VR by means of a projector on the core state q~ls is not completely satis- 
fying for it does not allow to mix the ~p~ and ~P2~ orbitals. Therefore the pseudo- 
orbitals obtained by Bonifacic and Huzinaga show residual oscillations in the 
core (see Fig. 1 of Ref. [-39]). Their pseudopotential would be more of the oscil- 
lating type. 

7. Conclusion 

We have chosen to work only with hermitian pseudopotentials; for we think 
that the hermitian pseudopotential set is large enough to afford the needs of 
quantum chemistry. We have presented a general theoretical method to determine 
atomic pseudopotentials. A part of the originality of this work lies in the initial 
choice of the valence pseudo-orbital ~bv. The potential operators are then deter- 
mined by the simultaneous knowledge of these valence pseudo-orbitals and the 
valence atomic orbital energies e v obtained in a theoretical Hartree-Fock calcu- 
lation for the ground state of the atom. Most of the pseudopotential methods 
introduce only a restricted information limited to the experimental energies Ev. 
Our method introduces an equilibrated information between the ~v's and the ~bv's. 

Another interesting feature of this work lies in the choice of the numerical 
techniques. We have indeed cast the exact pseudopotentials into the simplest local 
representations which can be easily used in valence molecular calculations. We 
have systematically used least-squares techniques. These operators can conse- 
quently be obtained with all the required accuracy. We are now computing more 

2 Before revising this manuscript, Melius et al. [47] have recently published new atomic repulsive 
pseudopotentials very similar to ours. 
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elaborate pseudopotentials with the analytical form (29); the corresponding 
parameter tables will be published in the near future. 

The pseudopotential presented in this article have been checked in our labora- 
tory on numerous valence molecular calculations. For molecules containing only 
light atoms of the first two rows of the periodic table, a valence Hartree-Fock 
calculation and an all-electron Hartree-Fock calculation lead to very similar 
results (molecular orbital energies, interatomic distances ...) [6]. The use of these 
atomic pseudopotentials for molecules containing heavier atoms of the third row 
of the periodic table gives an excellent agreement with experimental data, such as 
interatomic distances, bond angles, rotational barriers [-7]. The results obtained 
will be published in a second article. This work is a first step towards the obtention 
of pseudopotential methods with well-defined theoretical status which will allow 
the approximate determination of the valence electronic structure of molecules 
and solids containing any atoms of the periodic table. 
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